Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The wheat pathogen Zymoseptoria tritici senses and responds to different wavelengths of light.

Identifieur interne : 000017 ( Main/Exploration ); précédent : 000016; suivant : 000018

The wheat pathogen Zymoseptoria tritici senses and responds to different wavelengths of light.

Auteurs : Cassandra B. Mccorison [États-Unis] ; Stephen B. Goodwin [États-Unis]

Source :

RBID : pubmed:32711450

Abstract

BACKGROUND

The ascomycete fungus Zymoseptoria tritici (synonyms: Mycosphaerella graminicola, Septoria tritici) is a major pathogen of wheat that causes the economically important foliar disease Septoria tritici blotch. Despite its importance as a pathogen, little is known about the reaction of this fungus to light. To test for light responses, cultures of Z. tritici were grown in vitro for 16-h days under white, blue or red light, and their transcriptomes were compared with each other and to those obtained from control cultures grown in darkness.

RESULTS

There were major differences in gene expression with over 3400 genes upregulated in one or more of the light conditions compared to dark, and from 1909 to 2573 genes specifically upregulated in the dark compared to the individual light treatments. Differences between light treatments were lower, ranging from only 79 differentially expressed genes in the red versus blue comparison to 585 between white light and red. Many of the differentially expressed genes had no functional annotations. For those that did, analysis of the Gene Ontology (GO) terms showed that those related to metabolism were enriched in all three light treatments, while those related to growth and communication were more prevalent in the dark. Interestingly, genes for effectors that have been shown previously to be involved in pathogenicity also were upregulated in one or more of the light treatments, suggesting a possible role of light for infection.

CONCLUSIONS

This analysis shows that Z. tritici can sense and respond to light with a huge effect on transcript abundance. High proportions of differentially expressed genes with no functional annotations illuminates the huge gap in our understanding of light responses in this fungus. Differential expression of genes for effectors indicates that light could be important for pathogenicity; unknown effectors may show a similar pattern of transcription. A better understanding of the effects of light on pathogenicity and other biological processes of Z. tritici could help to manage Septoria tritici blotch in the future.


DOI: 10.1186/s12864-020-06899-y
PubMed: 32711450
PubMed Central: PMC7382159


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The wheat pathogen Zymoseptoria tritici senses and responds to different wavelengths of light.</title>
<author>
<name sortKey="Mccorison, Cassandra B" sort="Mccorison, Cassandra B" uniqKey="Mccorison C" first="Cassandra B" last="Mccorison">Cassandra B. Mccorison</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054</wicri:regionArea>
<wicri:noRegion>47907-2054</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goodwin, Stephen B" sort="Goodwin, Stephen B" uniqKey="Goodwin S" first="Stephen B" last="Goodwin">Stephen B. Goodwin</name>
<affiliation wicri:level="1">
<nlm:affiliation>USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA. Steve.Goodwin@ARS.USDA.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054</wicri:regionArea>
<wicri:noRegion>47907-2054</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32711450</idno>
<idno type="pmid">32711450</idno>
<idno type="doi">10.1186/s12864-020-06899-y</idno>
<idno type="pmc">PMC7382159</idno>
<idno type="wicri:Area/Main/Corpus">000174</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000174</idno>
<idno type="wicri:Area/Main/Curation">000174</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000174</idno>
<idno type="wicri:Area/Main/Exploration">000174</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The wheat pathogen Zymoseptoria tritici senses and responds to different wavelengths of light.</title>
<author>
<name sortKey="Mccorison, Cassandra B" sort="Mccorison, Cassandra B" uniqKey="Mccorison C" first="Cassandra B" last="Mccorison">Cassandra B. Mccorison</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054</wicri:regionArea>
<wicri:noRegion>47907-2054</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goodwin, Stephen B" sort="Goodwin, Stephen B" uniqKey="Goodwin S" first="Stephen B" last="Goodwin">Stephen B. Goodwin</name>
<affiliation wicri:level="1">
<nlm:affiliation>USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA. Steve.Goodwin@ARS.USDA.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054</wicri:regionArea>
<wicri:noRegion>47907-2054</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The ascomycete fungus Zymoseptoria tritici (synonyms: Mycosphaerella graminicola, Septoria tritici) is a major pathogen of wheat that causes the economically important foliar disease Septoria tritici blotch. Despite its importance as a pathogen, little is known about the reaction of this fungus to light. To test for light responses, cultures of Z. tritici were grown in vitro for 16-h days under white, blue or red light, and their transcriptomes were compared with each other and to those obtained from control cultures grown in darkness.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>There were major differences in gene expression with over 3400 genes upregulated in one or more of the light conditions compared to dark, and from 1909 to 2573 genes specifically upregulated in the dark compared to the individual light treatments. Differences between light treatments were lower, ranging from only 79 differentially expressed genes in the red versus blue comparison to 585 between white light and red. Many of the differentially expressed genes had no functional annotations. For those that did, analysis of the Gene Ontology (GO) terms showed that those related to metabolism were enriched in all three light treatments, while those related to growth and communication were more prevalent in the dark. Interestingly, genes for effectors that have been shown previously to be involved in pathogenicity also were upregulated in one or more of the light treatments, suggesting a possible role of light for infection.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This analysis shows that Z. tritici can sense and respond to light with a huge effect on transcript abundance. High proportions of differentially expressed genes with no functional annotations illuminates the huge gap in our understanding of light responses in this fungus. Differential expression of genes for effectors indicates that light could be important for pathogenicity; unknown effectors may show a similar pattern of transcription. A better understanding of the effects of light on pathogenicity and other biological processes of Z. tritici could help to manage Septoria tritici blotch in the future.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32711450</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>The wheat pathogen Zymoseptoria tritici senses and responds to different wavelengths of light.</ArticleTitle>
<Pagination>
<MedlinePgn>513</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-020-06899-y</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The ascomycete fungus Zymoseptoria tritici (synonyms: Mycosphaerella graminicola, Septoria tritici) is a major pathogen of wheat that causes the economically important foliar disease Septoria tritici blotch. Despite its importance as a pathogen, little is known about the reaction of this fungus to light. To test for light responses, cultures of Z. tritici were grown in vitro for 16-h days under white, blue or red light, and their transcriptomes were compared with each other and to those obtained from control cultures grown in darkness.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">There were major differences in gene expression with over 3400 genes upregulated in one or more of the light conditions compared to dark, and from 1909 to 2573 genes specifically upregulated in the dark compared to the individual light treatments. Differences between light treatments were lower, ranging from only 79 differentially expressed genes in the red versus blue comparison to 585 between white light and red. Many of the differentially expressed genes had no functional annotations. For those that did, analysis of the Gene Ontology (GO) terms showed that those related to metabolism were enriched in all three light treatments, while those related to growth and communication were more prevalent in the dark. Interestingly, genes for effectors that have been shown previously to be involved in pathogenicity also were upregulated in one or more of the light treatments, suggesting a possible role of light for infection.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This analysis shows that Z. tritici can sense and respond to light with a huge effect on transcript abundance. High proportions of differentially expressed genes with no functional annotations illuminates the huge gap in our understanding of light responses in this fungus. Differential expression of genes for effectors indicates that light could be important for pathogenicity; unknown effectors may show a similar pattern of transcription. A better understanding of the effects of light on pathogenicity and other biological processes of Z. tritici could help to manage Septoria tritici blotch in the future.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>McCorison</LastName>
<ForeName>Cassandra B</ForeName>
<Initials>CB</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goodwin</LastName>
<ForeName>Stephen B</ForeName>
<Initials>SB</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-5708-9729</Identifier>
<AffiliationInfo>
<Affiliation>USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA. Steve.Goodwin@ARS.USDA.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>3602-22000-017-00D</GrantID>
<Agency>Agricultural Research Service</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Gene expression</Keyword>
<Keyword MajorTopicYN="N">Light</Keyword>
<Keyword MajorTopicYN="N">Mycosphaerella graminicola</Keyword>
<Keyword MajorTopicYN="N">Photobiology</Keyword>
<Keyword MajorTopicYN="N">RNAseq</Keyword>
<Keyword MajorTopicYN="N">Zymoseptoria tritici</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32711450</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-020-06899-y</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-020-06899-y</ArticleId>
<ArticleId IdType="pmc">PMC7382159</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2009 Jan 15;25(2):288-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):756-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21467214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 Nov;42(11):887-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16154782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D322-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 May 04;17:327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27142227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Jul;7(7):1227-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18503005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Jan 15;31(2):166-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25260700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2014 Oct 29;4(12):2519-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25360032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2013 Mar 26;4(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23532976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1995 Apr 20;247(2):157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7753024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 May 15;11(5):e1005215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25978382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2014 Mar-Apr;11(2):375-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26355784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Apr;80(8):2582-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24532063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 14;274(20):14288-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Nov;19(11):1262-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17073308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1967 Nov;42(11):1504-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16656687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1989 Mar;9(3):1271-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2524647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2012 Feb 1;153(1-2):148-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22137249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2004 Jul;150(Pt 7):2475-2489</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15256589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2015 Dec 28;36(5):781-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26711258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2014 Jul 21;4(9):1731-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25053707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1981 Sep;68(3):745-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16661992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1984 Aug;159(2):757-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6235211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Apr;13(3):263-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21933337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Apr 1;15(7):1650-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8612589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2017 Feb;18(2):276-292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27558898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Dev Biol. 1990 Jun;34(2):319-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2386731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2018 Jan;27(1):216-232</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29134709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D222-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25414356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 1;30(9):1236-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W327-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2015 Jun;79:8-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26092783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21109532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Oct 01;10:2210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31632366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2014 Feb;116(2):380-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24176027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Apr;79(8):2777-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23417004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Dec 31;8(12):e84223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24391918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 May;42(5):471-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2005 Nov 15;252(2):197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16165316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2015 Jun;79:3-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26092782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Apr 22;28(8):1029-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19262566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invertebr Pathol. 2018 Feb;152:35-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29408156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 Oct;43(10):694-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16765070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2009 Jul;8(7):1051-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19411623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Jan 11;33(1):2-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8286340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Nov;47(11):930-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20460165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1990 Oct;10(10):5064-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2144609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2019 May 30;85(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30979837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1976 Mar;57(3):440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2000 Sep;38:461-490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1991 Dec 25;19(24):6883-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1837079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2015 Jan;119(1):67-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25601150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2010 Nov-Dec;102(6):1221-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20943572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microorganisms. 2020 Mar 05;8(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Apr;48(4):400-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21241815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16709-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20807745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2010 Oct;9(10):1549-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20675579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Feb;77(3):942-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21115702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Oct;45(10):1364-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Aug 17;18(1):631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28818040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Aug 2;297(5582):815-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12098706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2003 Nov;40(2):159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14516768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Apr;19(4):389-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16610742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2013 May 28;9:667</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23712010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2017 Oct;63(5):931-949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28382431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Res. 2017 Apr;31(8):909-917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27820961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D200-D203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Oct 25;15(20):1833-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16243030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Apr;12(4):357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25751142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Jun;7(6):e1002070</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21695235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2008 Apr;54(4):259-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18388998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Sep;45(9):1265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18644246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Sep 15;33(18):2938-2940</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28645171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Oct;45(10):1422-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18667168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jul;7(7):e1002113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21829344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2012 Jan;36(1):1-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21658084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2016 Mar 08;7(2):e02148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26956589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2017 Mar;30(3):231-244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28121239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2015 Dec;112(12):2543-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26039904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1990 Sep;4(9):1473-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2253875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2006 Jul;7(4):269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Persoonia. 2011 Jun;26:57-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22025804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(12):e1003037</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23236275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26582926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxins (Basel). 2018 Jan 05;10(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29304012</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Mccorison, Cassandra B" sort="Mccorison, Cassandra B" uniqKey="Mccorison C" first="Cassandra B" last="Mccorison">Cassandra B. Mccorison</name>
</noRegion>
<name sortKey="Goodwin, Stephen B" sort="Goodwin, Stephen B" uniqKey="Goodwin S" first="Stephen B" last="Goodwin">Stephen B. Goodwin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000017 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000017 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32711450
   |texte=   The wheat pathogen Zymoseptoria tritici senses and responds to different wavelengths of light.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32711450" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020